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ABSTRACT

The objective of the Gross Motion Control project az the

Air Force Institute of Technology (AFIT) Robotic Systems Lab-

oratory is to investigate alternative control approaches that will

provide payload invariant high speed trajectory tracking for non-

repetitive motions in free space. Our research has concentrated
on modifications to the model-based control structure. We are

actively pursuing development and evaluation of both adaptive

primary (inner loop) and robust secondary (output loop) con-

trollers. In-house developments are compared and contrasted to

the techniques proposed by other researchers. The case study for
our evaluations is the first three links of a PUMA-560. Incor-

porating the principals of multiple model adaptive estimation,

artificial neural networks, and Lyapunov theory into the model-

based paradigm has shown the potential for enhanced tracking.

Secondary controllers based on Quantitative Feedback Theory_

or augmented with auxiliary inputs, significantly improve the

robustness to payload variations and unmodeled drive system

dynamics. This paper presents an overview of the different con-

cepts under investigation and provides a sample of our latest

experimental results.

1 Introduction

An initiative at the Air Force Institute of Technology (AFIT)

Robotic Systems Laboratory is the development, analysis, and

experimental evaluation of intelligent robotic manipulator con-

trol algorithms. The motivation for our research is the high

degree of tracking accuracy and environmental compliance re-

quired by future aerospace applications like robotic telepresenee

and automated flightline maintenance. The requirement for ac-

curate high speed tracking with variable payloads can not be

satisfied by classical individual joint feedback control schemes.

Advanced control concepts that utilize knowledge of manipulator

system dynamics are required. Those approaches must be robust

and/or adapt to variations in manipulator dynamics caused by

model inaccuracies, payload variation, and environmental inter-
action.

The objective of the Gross Motion Control project is to in-

vestigate alternative control approaches that will provide pay-

load invariant high speed trajectory tracking for non-repetitive

motions in free space. Our research has concentrated on mod-

ifications to the model-based control structure. Techniques for

improving model-based controller performance can be divided

into two groups based on whether they concentrate on the feed-

forward or feedback portion of the algorithm. AFIT is actively

pursuing development and evaluation of techniques in both ar-

eas. The test case for our studies is the first three joints of a

PUMA-560. The PUMA's well known design limitations provide

a challenging control system design problem. Any algorithm that

performed well on PUMA will work even better on the modern

designs that will inhabit future fiightlines. This paper provides

an overview of the concepts being investigated and presents some
of our latest results. Detailed information is contained in the nu-

merous references.

This overview is organized as follows. In section two we

describe the experimental evaluation environment and the con-

trol algorithm used to provide a tracking performance baseline.

Section three discusses the development and evaluation of three

forms of adaptive feedforward compensation while section four

serves the same function for robust feedback and auxiliary input

concepts. Conclusions and on-going research are the subject of
section four.

2 Experimental Environment

The need to operate on equipment designed for human mainte-

nance focuses our efforts on controllers for vertically articulated

robotic systems with high torque amplification drive systems.

While the modeling of link dynamics is well understood, com-

plete modeling of drive system dynamics is difficult, if not im-

possible, for geared or harmonic transmissions. The motor and

transmission dynamics of high torque drive systems play a ma-

jor role in manipulator system dynamics [15, 18]. Therefore, the

true performance potential of advanced robotic control concepts

can only be determined through experimental evaluation and

analysis. The experimental evaluations performed in this study

were conducted nnder the AFIT Robotic Control Algorithm De-

velopment and Evaluation (ARCADE) environment [15]. Unless

otherwise noted the algorithm servo rate is 222 Hz.

The goal of our experimental control algorithm evaluations

is to validate concepts, not produce the optimum PUMA specific

algorithm. Evaluations are conducted over operational configu-

rations that excite all the manipulator's dynamical interactions

so that general conclusions about algorithm performance can be

drawn. Motion from (-50°,-135°,135 °) to (45°,-90°,30 °) in

1.5 seconds excites all the dynamics [15]. Robustness to payload

variation is evaluated by attaching a series of brass disks to the

sixth link mounting flange. The additional payload produces a

significant change in inertial and gravitational dynamics [17, 15].

The general form of the output torque vector (r) for a model-

based control algorithm can be divided into feedforward (rff),

feedback (rfb), and auxiliary input (%x) components.

r= r=_+ryS+rfb (1)
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Each of the five techniques discussed in this paper modifies only

one of those components. The actual algorithm that controls

future robots will probably have modifications to all three com-

ponents but first we must understand how they function inde-

pendently.

All the algorithms were implemented on a digital computer.

The delay inherent in a digital implementation is handled by

using the error information from the previous sample time in

the current cycleoutput torque calculations.A single(non-

adaptive)model-basedcontrol(SMBC) algorithmwithcomplete

feedforwarddynamic compensation and fixedPD gainsprovided

the performance baselineforour evaluations.

w(k) = [b(qd(k),a) + J,Z]_d(k) + h(Od(k),qd(_),a) +(2)

B,H_d(_ ) + 7, +_(qd(k),_)

_Jb(_)= Z,',_(k - 1) + A',_(_ - 1) (3)

_(k - 1)= qd(k- 1) - e(k - 1)/% (4)

e(k - 1) = qd(k - 1)- q(k - l) (5)

where: "represents modeled values, and the the _edforward and

_edback components are identical to the configuration employed

in previous research [15].

3 Adaptive Feedforward Compensation

Three adaptive feedforward compensation techniques are in var-

ious stages of development and evaluation. In all cases the feed-

back loop rfb has been fixed to the same gain set used for the

SMBC baseline. Fixing the feedback allows the performance

improvement from adaptation to be isolated and analyzed. All

three algorithms have adaptation mechanisms that are drive by

trajectory errors so they can be considered as direct forms of

adaptive control. Discussion will start with the most mature al-

gorithm, adaptive feedforward compensation based on Lyapunov

theory [14].

3.1 Adaptive Model-Based Control

Slotine and Li proposed an approach to adaptive model-based

control (AMBC) that uses parameter adaptation based on Lya-

punov theory to compensate for model-based controller limita-

tions [27, 28]. An excellent tutorial on adaptive model-based

control based on Lyapunov theory is in [22]. Successful exper-

imental evaluation on the MIT WAM robot [21] provided the

motivation for our investigation into the feasibility of the di-

rect adaptive model-based concept for a manipulator with: high

torque amplification drive system, slower peak velocities, and

variable payloads.

In our initial evaluation of the AMBC concept we imple-

mented the first control fornmlation proposed in [28]. The re-

sulta,lt AMBC algorithm had excellent tracking performance for

the zero payload case and excessive endpoint error in the pres-
ence of payload uncertainity. The adaptation mechanism was

also ineffective for slow trajectories [10]. The next logical step

was to implement the full sliding mode version of the Slotine

and Li approach [28]. tlowever, the inclusion of the position

and velocity measurement noise into the regressor produced un-

acceptable levels of vibration. To eliminate that problem, and

separate the performance improvement due to sliding mode feed-

back and parameter adaptation, we implemented a version of the

"Desired Compensation Adaptive Law" [20]:

= fo r' F-1yr(qd(k),Od(k),{d(k))[(_(k-1)+Ae(k-1)] (6)

where % is the sample period and the integration was accom-

plished using the Adams-Bashforth Two-Step method as de-

scribed in [4]. The adaptation mechanism now has the capability

to drive the position error asymptotically to zero and regressor

dependence on actual trajectory information is eliminated. An

additional implementation advantage is the ability to precom-

pute the regressor for known trajectories [20]. The basic struc-

ture of the adaptive control law remains unchanged:

rH(k) = Y1[qd(k), ild(k), Cld(k)]O(k) + Y2[q_(k), qd(k), gld(k)]On(k)

(7)
where Y is the regressor matrix and 0_ contains the "known" pa-

rameters and 0 contains the estimated parameters. The regres-

sor is based on the known structure of the manipulator system

dynamics and includes reflected actuator inertias and viscous

and coulomb friction [14]. All 0,_ parameters were initialized to

directly correspond to the nominal values used in our previous

studies [15, 18]. The A matrix was diagonal with components
),i i ,i= kp/kD, where k) and k_) represent the diagonal terms of

the position and derivative feedback gain matrices respectively.

AMBC tuning is a very heuristic procedure which is depen-

dent on: the manipulator, the number of adaptive parameters,

and the individual components of the F -1 matrix. The simple

seIection of a diagonal I"-1 matrix can result in improved perfor-

mance or disaster. The relative magnitude of the individual r -1

elements can vary widely, and aggressively adapting certain pa-

rameters can cause instability. In order to maximize algorithm

performance and maintain stability we employed a rigorous three

step tuning procedure [14].

There was a definite correlation between maximum tracking

performance and the size of the 0 vector. Sixteen parameters was

the magic number for our implementation. An interesting obser-

vation was that the amount of parameters, degrees of freedom

in the space, not their physical significance was the important

factor [t@ The adaptation law uses the available degrees of free-
dom to find the location in the parameter space which produces

the minimal overall error for the three joints. Our results are

consistent with another AMBC study were the authors found

they could eliminate any' knowledge of viscous and coulomb fric-

tion forces from the regressor and retune the adaptation law to

compensate [5]. Investigations to further explore the generality

of this hypothesis are underway.

The first step in the evahation process was to baseline our

controller over the standard evaluation suite. The parameter

vector t_ was initialized prior to each test to a set of nominal

values based on our a priori knowledge of zero payload manipu-

lator system dynamics [17, 15]. Figures 1-6 highlight the tracking

performance for both zero and 2 Kg payloads. AMBC clearly

demonstrates the ability to compensate for uncertainties in drive

system dynamics and end-effector payload.

A comprehensive evaluation of AMBC capabilities is under-

way. Investigations into the effects of: learning, parameter ini-

tialization, and feedback gains on algorithm performance have

revealed that [14]:

• A short initial zero payload training phase permits the con-

troller to learn the unmodeled drive system dynamics and
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errorsin nominal inertialparameters. Continuallearning

does not hinder the algorithm'sabilityto adapt to varia-

tionsin operational conditions.

• Transient performance during learning can be unpre-

dictable even after initial training.

• For maximum tracking performance the adaptation pro-

cesses should not be disabled.The controllermodifiesthe

parameter setover the courseof the trajectoryeven after

the learning phase.

• While the adaptationabilityof the AMBC isimpressive,

formaximum trackingperformance thereisstillno substi-

tuteforgood nominal parameter information.

• Insteadoflearningthe actualvalues,the adaptationmech-

anism learnsthe effectof the parameters on the tracking

errorand reactsaccordingly.

. SofterPD gainsreduce the robustnessofany model-based

algorithmto payload uncertainityand model mismatch.

AMBC was no exception. However, the abilityto learn

nullifies the high gain advantage.

The performance of an AMBC algorithm should be care-

fully monitored over the expected operational range to assure

that transientsare within specifications.The desiredtrajec-

toriesshould alsobe checked for actuatorconstraintssuch as

saturationor jerk limitations.Eitherof thoseconstraintscan

produce tracking instability.

3.1.1 Multiple Model-Based Control

An alternative to the Lyapunov based approach is the use of

stochastic estimation/adaptation techniques. In addition to pro-

viding a fast means of parameter adaptation the stochastic ap-

proach explicitly accounts for the numerous sources of noise and

uncertainty in a real physical system. Multiple Model Adaptive

Estimation (MMAE) is a Bayesian estimation approach that em-

ploys multiple I<Mman filters to quickly and accurately estimate

parameters in the presence of noise and uncertainty. By combin-

ing the principles of MMAE and model-based control a powerful

new form of adaptive model-based control was developed [13].

The Multiple Model-Based Control (MMBC) technique uti-

lizes knowledge of nominal plant dynalaics and principles of

Bayesian estimation to provide a high degree of tracking accu-

racy in uncertain payload configurations. The MMBC algorithm

is formed by augmenting a model-based controller with a form

of MMAE. The MMAE algorithm is tuned to provide an esti-

mate of the payload parameter (_i). The model-based controller

combines the a priori knowledge of nominal structure wkh the

parameter estimate to produce the multiple models of the robot

dynamics required to maintain tracking accuracy.

The basic premise of the MMAE technique is that the con-

tinuous parameter vector a can be discretized into a finite set

of possible vector values, (al,a2,...,aK). The discretization

of a must be large enough that there is a discernible difference

between the models but not so large as to induce unacceptable

errors in the estimate. The MMAE is composed of K Kalman

filters running in parallel, each of whose plant models is based

upon an assumed parameter a k. At the ith sample time, the

measurement is passed to each of the filters. The residuals gen-

erated by the K filters are used to calculate the hypothesis con-

ditional probabilities. These probabilities are used as weighting

factors to generate _.. Additional information about the prin-

ciples of Multiple Model Adaptive Estimation can be found in

[13, 19].

Figure 7 provides a sample of the experimental error profiles

for the MMBC technique. The servo period for those evaluations

was 100 Hz. Experimental evaluations have validated the simu-

lation studies and clearly demonstrated the algorithm's potential

to adapt to payload variations [13]. The MMBC approach is the

most computationaily complex algorithm we have evaluated, and

the level of tuning difficulty is on the same order of magnitude

as the Lyapunov technique. Additional research is required to

determine any advantages that this method may have over the

neural network or Lyapunov based concepts.

3.2 Neural Network Payload Estimation

Our concept for integrating the principles of artificial neural

networks and model-based control was initially developed and

experimentally evahated for the relatively simple motions of a

single vertically articulated joint [8]. Previous experiments ex-

amined the Adaptive .Model-Based Neural Network Controller

(AMBNNC) with varying payloads, initial conditions, and pay-

load update rates. Those experiments showed that a Neural

Network Payload Estimation (NNPE) algorithm can quickly and

accurately identify payload variations from manipulator tracking
error patterns. The three DOF extension was not a trivial ex-

trapolation of our initial research and provides valuable insights

into the utilization and training of ANNs for robotic control [12].

Both the MMBC and AMBNNC algorithm development

started with the assumption that a reasonably accurate model

of system dynamics was available. If no a priori model infor-

mation is available off-line techniques can be employed to de-

termine one [9]. Neural Network Payload Estimation (NNPE)

provides a mechanism by which the payload dependence of the

model-based control paradigm is reduced [8, 12]. The Adaptive

Model-Based Neural Network Controller (AMBNNC) uses the

output of a NNPE to adapt the feedforward dynamic compen-

sation torques to payload variation or other disturbances that

might increase tracking error. The feedforward compensation is

identical to Equation (2) with the provision that the fi values

are now the payload parameter vector estimate produced by the
NNPE.

The particular form of NNPE currently being investigated

uses multilayer perceptron (MLP) artificial neural networks

(ANNs) to determine the payload mass parameter. One neu-

ral network is trained and used for each individual update time

of the trajectory. The neural networks consisted of (6) input

nodes, (12) nodes in each of two hidden layers, and (5) output

nodes. Training was performed using the same techniques and

performance measurements as for the single link case [8]. To

generate a representative set of training data for the multi-joint

NNPE, the manipulator was run through the 3 DOF test trajec-

tory ten times for each payload condition producing 121 training

exemplars [12]. Instead of four payload payload classes with only

positive payload variation the multi-joint NNPE was trained for

five payload classes representing negative two to positive two

kilogram variations. The step size remained at one kilogram
and the desired value was still 0.9 for the actual class. Trained
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networksweretestedin feedforwardoperationusingvectorsof
positioninformationnotpreviouslyseenbythenetworks.Accu-
racyanderrorwerecalculatedthesameasduringtrainingtests.
Thetrainedneuralnetswerethenreadyforon-lineoperation
andevaluation.

Theaugmentationofamodel-basedcontrollerwithaNNPE
algorithmdefinitelyimprovesoveralltrackingperformance,but
payloadinvariancehasnotyetbeenobtained[12,II]. Current
researchisconcentratedonremovingtherestrictionsthatlimit
AMBNNCperformancetolevelsnoticeablybelowtheAMBC.
Alternativeparadigmsfortrainingthemultilayerperceptrou
networkareunderinvestigationandreplacingtheMLPwith
amoresophisticatedANNisunderconsideration.Theamount
ofadaptiveparameterswillalsobeincreased.AMBCanalysis
revealedthatadaptivealgorithmperformancewasstronglycor-
relatedtodegreesoffreedomintheparameterspace.Although
thecurrentAMBNNCimplementationmodifiestheentirepay-
loadvectoronlythemassparameterisadapted.Theabilityto
eIiminatethedependenceonheuristictuningandthepotential
displayedbythesingleparameteradaptationarethemotivation
forourcontinuedresearchinthisarea.

4 Feedback Compensation

Inconjunction with the adaptive feedforward evaluations two

forms of feedback compensation under investigation. Both meth-

ods were mature enough to be compared against the perfor-

mance of the AMBC approach over the standard evaluation
suite. Those evaluations show that all three methods offer a

comparable level of tracking accuracy.

4.1 MBAIC

In a series of publications Seraji has presented the development

of an improved Lyapunov-based Model Reference Adaptive Con-

troller (LB-MRAC) [24, 25, 23]. His initial PUMA evaluations

were conducted without feedforward adaptation over a very slow

trajectory [25]. We replicated those results and then evaluated

several version of the algorithm over the standard test suite [16].

Without feedforward compensation LB-MRAC tracking accu-

racy is inferior to SMBC and, if the PD gains are initialized to

a reasonable value, the the effect of gain adaptation is negligi-

ble. The real power of the technique is in the robust properties

of the auxiliary term. Apparently Seraji also came to that re-

alization and proposed a robust technique that incorporates an

adaptive gain auxiliary input, fixed PD feedback, and the nom-

inal dynamic feedforward compensation of a model-based con-

troller [26]. As an example of the potential from augmenting a

model-based structure with an auxiliary input we implemented

a version of his approach.

Model-Based Auxiliary Input Control (MBAIC) is formed

by augmenting a model-based controller with an auxiliary input

based on Lyapunov theory [16]. The feedforward compensation

(rfi) and feedback (rib) are not altered. No gain adaptation is

employed. MBAIC produced tracking accuracy superior to the

pure LB-MRAC concept and the SMBC baseline [16]. The exact

form of the auxiliary inp'at depends on the techniques employed

to calculate the velocity error and perform the digital integra-

tion. A r_, input expressed as:

_'_.(k) = lt_,Vp-_[e(k - 1) + e(k - 2)] +
l;

T_ /ct,_,_-[0e( - 1) + 0e(k - 2)] +
1

_[q(k - 3) - q(k - 1)1 (s)

accounts for the one time step delay in error information due

to our digital implementation and produced the best response

[16]. Application of the MBAIC on the PUMA did not exhibit

any symptoms of integrator windup. Therefore the inclusion of

a "cr modification" [26] in the auxiliary term would only degrade

tracking accuracy.

Figures 1-6 highlight MBAIC tracking efficacy. Addition of

an auxiliary input significantly enhances model-based controller

tracking accuracy and eliminates the large end-point error pre-

viously associated with operation in uncertain payload configu-

rations. MBAIC has the potential to support both high speed

trajectory tracking and environmental compliance by shifting the

stiffness required for accurate gross motion control to a switch-

able auxiliary input. The main limitation with the MBAIC con-

cept is the tuning process.

The starting point for our MBAIC tuning wa_ the auxiliary

input design parameters specified by Seraji [25]. The amount

of time devoted to arriving at those parameters is unknown but

efforts to improve the tracking by increasing the wp and w, val-

ues only produced increased levels of vibration. We were able

to improve performance slightly by selecting the _1 values indi-

vidually for each joint [14]. Searching the parameter space for a

good set of PID gains is a non trivial task and we suspect that

MBAIC tuning requires a similar degree of heuristic effort.

4.2 MBQFT

Quantitative Feedback Theory (QFT) is a frequency domain de-

sign procedure which has been successfully applied to the prob-

lems of robust flight control [7, 6]. The superior performance

of the QFT in those applications motivated our investigation

of a robotic imple,nentation [1, 3]. An introduction to QFT

design, and a comprehensive set of references can be found in

[6]. Application to a robotic system required the development

of a pseudo-continuous time (PCT) analog QFT design proce-

dure. The combination of nonlinear feedforward compensation

and PCT-QFT feedback is referred to as a Model-Based Quan-

titative Feedback Theory (MBQFT) controller [1, 3]

Since the PUMA case study is a 3x3 system, a 3x3 QFT

multiple-input, multiple-output design was used. The 3x3 sys-

tem was decoupled into three equivalent MISO loops and the

interactions between the joints were modeled as disturbances.

The MBQFT design evaluated in this study was based on seven

plant templates equally spaced over the fast standard trajectory.
The nominal feedforward compensation allows a linear QFT de-

sign to be used. The robot dynamics were linearized based on

a zero payload configuration. The analog design is converted to

the digital domain by an exact Z-transform and proper sealing of

the control law. The feedback controller for joint one was third

order over third order in the z-plane, the joint two and three con-
trollers were fourth order over fourth order. The actual feedback

control torques were produced by backwards difference equations

[1, 3]:

r/b(k) = A3_(k) + A2e(/," - 1) + .41_(k - 2) + Ao_(k - 3)

-B2rfb(k - 1) - Blrib(k - 2) - Bor]b(k - 3) (9)
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7"fb(k) = A4e(k)+ A3e(_- 1) + A2e(]_- 2)Ale(k- 3)

+Ao6(k - 4) - B3Tfb(k -- 1) -- B2Tfb(k -- 2)

-BlVfb(k - 3) - B0r]b(k - 4) (10)

Equation (9) was used for joint 1 while joint 2 and 3 feedback

was of the form of Equation (10).

The analog design is based on instantaneous position error

information. The unmodeled one sample period delay inherent

in a digital implementation was accounted for with an error es-
timator.

_(k) = e(k - 1) + (0d(k - 1) - 0(k - 1)), Ts (11)

The key benefit of this approach is that analog design procedures

could be used while still considering the digital effects (primarily,

sampling delays). The additional on-line computational require-

ments, as opposed to the standard PD feedback control law, are
minimal.

While algorithm development may be mathematically rig-

orous, tuning is usually based on heuristics. The key difference

between the MBQFT and the other methods is that QFT design

and tuning techniques are both well defined [6]. QFT synthesis
provides an excellent initial set of controller coefficients and em-

ploys classic control tradeoffs such as giving up gain for phase

margin to further tune performance [1, 3]. Empirical studies

have revealed that designs based on the nominal robot dynam-

ics tend to overstate the gain requirement [2]. If the gain is high

enough to cause vibration on the robot, some phase margin must

be given up to decrease the gain. The initial MBQFT controller

caused excessive arm vibration due to high gains. However, only

three design iterations were required to achieved the level of per-

formance shown in Figures X-Y.

The MBQFT technique provides high speed trajectory track-

ing performance that is robust to small payload variations and

unmodeled drive system dynamics. Replacing the r/b block with

feedback laws based on PCT-QFT design resulted in up to a fac-

tor of four improvement in tracking accuracy: The non-heuristic

nature of the MBQFT design and the computational simple im-

plementation makes this approach an attractive alternative for

a wide range of industrial manipulators.

5 Conclusions

The Gross Motion Control project has produced a new level of

understanding about the control techniques necessary to provide

the high level of trajectory tracking performance required for fu-

ture Air Force applications. Model-based control can be made

robust to incomplete dynamics modeling and payload uncertain-

ity and is therefore a suitable structure for intelligent control
algorithms.

Incorporating a desired compensation adaptation law, robust

feedback, or an auxiliary input produced a model-based con-

troller with payload invariant tracking for the first two joints

of the PUMA. Therefore, the selection of "best" concept for

enhanced tracking will depend on factors other than tracking

performance. The two main considerations are tuning and com-

putation time. While the adaptive approaches are more compu-

tational intensive the ever increasing power of modern micropro-

cessors makes small variations in algorithm complexity a mute

point. However, the tuning issue is very real and can not be

ignored. The MBQFT has a distinct advantage in this area that

neural networks may offset. The MBQFT design and tuning

procedures are mathematically well defined and can be related

to the well known parameters of gain and phase margin. For

that reason we recommend the MBQFT technique for indus-

trial applications with small payload variations. The learning

capabilities and compliance potential of adaptive model-based

control may be more appropriate for human arm emulation.

While are results are very promising there is still research

to be done in this area. Continued development and evaluation

of the AMBC and AMBNNC techniques is in progress. A com-

pliant form of AMBC is also under investigation. Techniques

for replacing the entire feedforward compensator with a neural

network are being developed. Once the digital control system

for the Utah/MIT had is operational we will extend our gross

motion control research to that platform. Comparison between

PUMA and hand evaluations will highlight the effects of manip-

ulator dynamics and actuator systems on advanced controller

tracking performance.
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Figure 3: Joint 3 Tracking Evaluation w/o Payload
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Figure 4: Joint 1 Tracking Evaluation with Payload
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Figure 5: Joint 2 Tracking Evaluation with Payload
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DATA KEY FOR FIGURES 1-6
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Figure 7: Tracking Evaluation with 3 Kg Payload
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